Tal1/SCL binding to pericentromeric DNA represses transcription.

نویسندگان

  • Jie Wen
  • Suming Huang
  • Svetlana D Pack
  • Xiaobing Yu
  • Stephen J Brandt
  • Constance Tom Noguchi
چکیده

Tal1/SCL is a basic helix-loop-helix transcription factor critical for normal hematopoiesis. To understand the mechanisms underlying transcriptional regulation by Tal1/SCL, we combined an in vitro DNA binding strategy and an in vivo chromatin immunoprecipitation analysis to search for Tal1/SCL target regions in K562 erythroleukemia cells. A 0.4-kb genomic DNA clone containing two Tal1/SCL binding E-boxes and GATA- and SATB1-binding motifs (EEGS) was identified that localized to the pericentromeric region with high homology to satellite 2 DNA. Pericentric DNA is related to heterochromatin and gene inactivation. We found that Tal1/SCL could complex with the histone H3 lysine 9 (H3K9)-specific methyltransferase Suv39H1. Binding of Tal1/SCL to EEGS chromatin correlated with hypermethylation of H3K9 and the association of heterochromatin protein HP1 to this region. In Rep4 reporter gene assays, EEGS affected repression in a manner dependent on the expression level of Tal1/SCL that was accompanied by increased H3K9 methylation in chromatin associated with EEGS and a linked promoter. A specific histone deacetylase inhibitor, trichostatin A, relieved Tal1/SCL-mediated repression by EEGS. In addition, SATB1 bound EEGS chromatin and promoted Tal1/SCL EEGS-dependent repression. We expand the list of potential interacting partners for Tal1/SCL by demonstrating direct associations of Tal1/SCL with SATB1 and with Suv39H1. These results reveal a novel mechanism of action for Tal1/SCL and implicate heterochromatin-like silencing via a cis-acting binding motif for transcriptional repression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

E-box sequence and context-dependent TAL1/SCL modulation of basic helix-loop-helix protein-mediated transcriptional activation.

TAL1/SCL is a basic helix-loop-helix (bHLH) oncoprotein that is expressed in several cell lines including many hematolymphoid cells, but not in T- and B-lineage cells. The TAL1 gene was originally discovered as being transcriptionally activated by chromosomal rearrangements in T-cell acute lymphoblastic leukemia (T-ALL). Here we have shown that TAL1 and the ubiquitously expressed murine bHLH tr...

متن کامل

Characterization of DNA-binding-dependent and -independent functions of SCL/TAL1 during human erythropoiesis.

The transcription factor TAL1 has major functions during embryonic hematopoiesis and in adult erythropoiesis and megakaryocytopoiesis. These functions rely on different TAL1 structural domains that are responsible for dimerization, transactivation, and DNA binding. Previous work, most often done in mice, has shown that some TAL1 functions do not require DNA binding. To study the role of TAL1 an...

متن کامل

LYL 1 ( lymphoblastic leukemia derived sequence 1 )

Recent studies show that LYL1 is required for fetal and adult hematopoietic stem cell function and B-cell differentiation. Overexpression of LYL1 is implicated in the pathogenesis of T-ALL as well as myeloid malignancies (see below, disease implications). The LYL1 protein is a transcription factor (TF), structurally and functionally similar to another bHLH protein TAL1/SCL which is also implica...

متن کامل

Genomic Approaches Uncover Increasing Complexities in the Regulatory Landscape at the Human SCL (TAL1) Locus

The SCL (TAL1) transcription factor is a critical regulator of haematopoiesis and its expression is tightly controlled by multiple cis-acting regulatory elements. To elaborate further the DNA elements which control its regulation, we used genomic tiling microarrays covering 256 kb of the human SCL locus to perform a concerted analysis of chromatin structure and binding of regulatory proteins in...

متن کامل

Structure of the leukemia oncogene LMO2: implications for the assembly of a hematopoietic transcription factor complex.

The LIM only protein 2 (LMO2) is a key regulator of hematopoietic stem cell development whose ectopic expression in T cells leads to the onset of acute lymphoblastic leukemia. Through its LIM domains, LMO2 is thought to function as the scaffold for a DNA-binding transcription regulator complex, including the basic helix-loop-helix proteins SCL/TAL1 and E47, the zinc finger protein GATA-1, and L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 13  شماره 

صفحات  -

تاریخ انتشار 2005